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Abstract. A recent report on ARPES on insulating Ca2CuO2Cl2, compared to previous data from
Sr2CuO2Cl2 and Dy-doped Bi2Sr2CaCu2O8+δ, sheds new light on the origin of the anisotropic pseu-
dogap observed in the normal state of underdoped cuprate oxides. The energy dispersion of the insulator
is attributed to strong AF correlations enhanced by the diagonal hopping between magnetic sites, which
is progressively deformed by the possibility of nearest neighbour hopping, that increases with hole doping.

PACS. 74.25.Jb Electronic structure – 74.72.-h High-Tc compounds

In a recent paper, Ronning et al. [1] reported a chal-
lenging angle resolved photoemission (ARPES) study on
Ca2CuO2Cl2, a parent compound of high-Tc superconduc-
tors. From their analysis they argue the existence of a
Fermi surface remnant, even though the system is a Mott
insulator. Furthermore the lowest energy peak exhibits a
dispersion with approximately the | cos kx − cos ky | form
along the X = (π, 0) → Y = (0, π) direction. Together
with previous data from insulating Sr2CuO2Cl2 [2–4]
and from metallic Dy-doped Bi2Sr2CaCu2O8+δ (Bi2212)
[5,6], these results strongly suggest that this d-wave like
dispersion for the insulator is the underlying reason for the
pseudogap in the underdoped regime. The authors arrive
to the fundamental question: “what does the data fitting
the nontrivial | cos kx−cos ky| function so well mean?” [1].

The basic phenomenology of the normal state pseu-
dogap has been now established from different ARPES
experiments [1–6]. Two energy scales have been identified
in the spectra: a leading edge shift of 20−25 meV and a
high-energy hump at 100−200 meV [5], which are referred
as the low- and high-energy pseudogaps, respectively [1].
Both, like the superconducting gap have an angular de-
pendence consistent with a d-wave form. The fact that the
high-energy pseudogap correlates with the low-energy one
which is likely to be related to superconductivity, suggests
to Ronning et al. [1], that it is likely that the same physics
that controls the d-wave dispersion of the insulator is re-
sponsible for the d-wave-like normal state pseudogap and
the d-wave superconducting gap in the doped samples.

Several models have been proposed for the pseudo-
gap: preformed pairs and phase fluctuations, damped spin-
density wave (SDW), resonant valence bond singlet forma-
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tion and spin-charge separation [7]. Using for the discus-
sion a phenomenological tight-binding approach, shown to
describe relevant numerical calculations when they exist,
we stress here that the nearly (not exactly) d-wave-like
dispersion observed for the insulator can be accounted for
by the strong antiferromagnetic (AF) correlations present
in the CuO square lattice of these systems. Furthermore,
because it is not a nesting effect, this explanation remains
valid in the underdoped metallic case. The magnitude of
this quasiparticle dispersion is enhanced by the additional
(diagonal) hopping between second neighbours Cu sites.
With increasing hole concentration the hopping between
nearest neighbour (n.n.) sites becomes possible but the in-
fluence of these strong local correlations is still important,
and the evolution from the insulator to the optimal doped
compound is done in a continuous manner. Then we also
show that, as proposed by Ronning et al. [1], the peculiar
energy dispersion of the insulator can be at the origin of
the high-energy gap in the underdoped samples.

A key feature in our approach is the presence of a nar-
row quasiparticle band, distinguished from the incoherent
part of the spectrum, and its crossing by the chemical
potential. We quote numerical calculations, both in the
t − J [8] and the Hubbard models [9], and the experi-
mental behaviour in the normal state, as supporting this
approximation.

Weak coupling limit

In a square lattice with n.n. hopping t, on-site Coulomb
repulsion U and one electron (or hole) per site, the orig-
inal band splits due to the AF ordering of the system.
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The energy dispersion is:

ε(k) = ±
√

2t(cos kx + cos ky)2 + V 2, (1)

V being the mixing term between both sublattices. The
peaked dispersion centered at M ′ = (π/2/, π/2) in the
Γ = (0, 0) → M = (π, π) direction reflects the AF or-
dering, ε(X) = ε(M ′), and there is no dispersion at all in
the X → Y direction for k-independent V . In the mean
field SDW approximation [10], in the large U/t� 1 limit,
∆ ' U/2 and J = 4t2/U , so equation (1) becomes:

ε(k) = ±[∆+ J(cos kx + cos ky)2)] (2)

with the same flat behaviour in the X → Y direction. In
this case the half filling factor is crucial: the gap rapidly
closes with doping, that destroys the nesting condition.

Strong coupling limit

These previous approximations fail in the strong coupling
case, where, from the beginning, other methods must be
used in order to obtain reliable results. The points of
Figure 1 correspond to the simulations by Dagotto
et al. [11] for the 2D t − J model, using a Green func-
tion Monte Carlo (GFMC) method, for clusters of different
sizes, and J/t = 0.4. These results are of general charac-
ter, i.e. independent of the details of the many different
studies derived from the Hubbard model. The curve shows
that the two first terms describing the hopping of a hole
that avoids disturbing the AF background:

ε(k) = C − 2t̃(cos 2kx + cos 2ky)− 4t̃ cos kx cos ky (3)

account for the main contribution to the energy disper-
sion. The effective hopping t̃ is the same for both terms.
We take C = −1.25t and we plot in Figure 1, equation (3),
with | t̃ |= 0.1t (with negative sign as in Fig. 1 of Ref. [11]),
in order to reproduce the numerical bandwidth. The en-
ergies of the different k-points can now be easily calcu-
lated, to verify the properties already pointed out for this
case [11]:

– the minimum energy is obtained at the M ′ point,
ε(M ′) = C − 4t̃. The energy of the X point being
ε(X) = C, the difference between these two minima,
ε(X) − ε(M ′) = 4t̃ is small, as t̃ is already a reduced
parameter. This point will be in conflict with the ex-
perimental results for the undoped cuprate oxides,

– the total bandwidth, W = 12 |t̃|, compared to the
numerical results of Figure 1 implies:

t̃/t = α(J/t) (4)

with α ' 1/4. This value is slightly larger than the
more general expression α ' 0.183, derived from [12],
considering W/t = 2.2(J/t) for J/t < 0.7,

– a remarkable feature is the almost flat region around
the X point, ε(π, π/2) = ε(π, 0) = ε(π/2, 0) = C, due
to AF correlations,

– but we note that a crucial difference with the previous
weak coupling case is the significant energy dispersion
in the X → Y diagonal, to which both terms in equa-
tion (3) contribute. This appears as a signature of the
strong coupling limit. Although this direction has not
been considered in [11], this main point is confirmed
by GFMC simulations for other parameters, e.g. [13].

We see from Figure 1 that equations (3, 4) have the
sufficient precision (note the better agreement with larger
size cluster calculations) to be advantageously used to
study the effect on the spectrum of contributions of other
origin. In particular, we will use them in the underdoped
case, where these strong correlations persist due to the
local AF environment, even in the absence of nesting
features.

Insulating cuprates

Wells et al. [2] first reported an ARPES study on insulat-
ing Sr2CuO2Cl2. Since this layered copper oxide is par-
ticularly difficult to dope, it precisely corresponds to the
theoretical scenario of a single hole in the quantum
AF background of the cuprates. Therefore it provided
a unique opportunity to test calculations, see Figure 2,
which yielded to the following conclusions:

– the 2D t− J model describes properly the data along
the Γ → M diagonal, with the highest energy in the
valence band for M ′, as expected from many calcula-
tions [8–14],

– the experimental bandwidth is very close to the re-
duced bandwidth obtained for one hole in an AF
background by various techniques; this is in contrast
with local density band calculations. The value W =
0.036 eV implies in our approach t̃ = 0.03 eV, yield-
ing the dashed curve plotted in Figure 2, which also
shows the disagreement with experiment: the observed
X → Γ direction has smaller dispersion than the cal-
culated one, the contrary occurs from X → Y .

These differences showed the necessity of taking into
account further contributions to the diagonal hopping
term [13], as had been pointed out long time before [15].
This additional t′ term in equation (5), that has been at-
tributed to the overlap of n.n. oxygen atoms, can be de-
rived from the three-band Hubbard Hamiltonian [16], and
has different sign depending on the doping carriers [17]:
electrons or holes. On the other hand, Andersen et al. [18]
have pointed out the crucial contribution of Cu4s orbitals
to this term. The energy dispersion becomes:

ε(k) = C − 2t̃(cos 2kx + cos 2ky)− 4(t̃+ t′) cos kx cos ky
(5)

with t′ > 0 for the hole doping case (as done by the
photoemission process). In Figure 2 the continuous curve
shows how this t′ term modifies the t − J spectrum.
More structure appears in the X → Γ direction and
ε(X) becomes lower than ε(Γ ) for |t′| > t̃, therefore the
bandwidth is given by W = 4(t̃ − t′). The maximum in
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Fig. 1. ε vs. k for the t − J model. The points cor-
respond to the GFMC numerical calculations of [11],
for J/t = 0.4 and the indicated cluster sizes. The
energy unit is t. The continuous curve is given by
equations (3, 4).

this direction that for the t−J model was at k = (π/4, 0)
shifts towards k = (π/2, 0). The effective expression used
for the t− J model allows us to determine the optimal t′

from equation (5), that fits the experimental data better
than in [13]. The Γ →M and X → Y directions are well
described, with the correct bandwidth. In the X → Γ di-
rection, |t′| > t̃ allows to reproduce ε(X) � ε(M ′) even
though the dispersion W ′ becomes twice the one reported
by Wells et al. [2]. However, latter measurements on this
compound [3] showed that when polarisation effects are
carefully taken into account, the dispersion is in very good
agreement with our curve: both, the X → Γ bandwidth
W ′ and the position of the maximum, as can be seen in
Figure 2.

Although the new data on Ca2CuO2Cl2 are consis-
tent with these results from Sr2CuO2Cl2, the improved
spectral quality allowed Ronning et al. [1] to derive fur-
ther conclusions: there is a remnant Fermi surface in the
insulator and the strong correlation effect deforms this
otherwise isoenergetic contour (the noninteracting Fermi
surface) into a form that matches the | cos kx− cosky| de-
pendence very well, but with a very high energy scale of
320 meV. Thus a “d-wave”-like dispersive behaviour seems
to exist even in the insulator.

In Figure 3 the high-energy “gap” of Ca2CuO2Cl2 is
plotted as a function of | cos kx − cos ky|/2, like in [1],
the straight line shows the d-wave behaviour. In the
same figure we have added the points and the con-
tinuous curve corresponding to the good fit that we
have already obtained for the X → Y direction of
Sr2CuO2Cl2. We note that the linear dependence is not
perfect: the inset shows the X → Y dispersion neces-
sary to obtain exact agreement. See the right panel in
Figure 2: the data and the calculation seem to de-
viate from the theoretical d-wave dispersion. Also the
Ca2CuO2Cl2 points show some differences, specially for
small values of | coskx − cosky|/2.

In our calculation the dispersion in the X → Y di-
rection is a consequence of strong AF correlations in the
square geometry of the CuO2 planes.

Hole doped case

When the parent compound is doped, one expects an in-
creasing probability of hopping to n.n. (although renor-
malized, tR) at expenses of the AF correlations. In our

Fig. 2. Comparison of the experimental ε vs. k dispersion
for insulating Sr2CuO2Cl2 with the calculation for the t − J
model (dashed line, Eqs. (3, 4)). Filled circles: data from [2],
open circles: data from [3]. The continuous curve is given by
equation (5), with C = −1 eV, t̃ = 0.042 eV, t′ = −0.05 eV.
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Fig. 3. The “gap” vs. | cos kx − cos ky|/2. Dashed line:
d-wave line for Ca2CuO2Cl2 (empty triangles) as in [1]. Contin-
uous curve: our fit in the right panel of Figure 2 for Sr2CuO2Cl2
(filled triangles). Bi2212 data from [1], open circles: 65 K, filled
squares: 25 K samples. Inset: X → Y dispersion necessary to
obtain a perfect straight line.

picture, because these interactions are a strong local en-
vironment effect, we can consider that it is the relative
weight of both processes that changes progressively with
doping. The effective dispersion becomes:

ε(k) = C − 2tR(cos kx + cos ky)− 2t̃(cos 2kx + cos 2ky)

− 4(t̃+ t′) cos kx cos ky. (6)

This expression allows to describe the evolution observed
for Dy-doped Bi2212 samples in [5], as it is shown in Fig-
ure 4, see effective parameters in the figure caption. With
increasing hole doping the remarkable k-dependence in
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Fig. 4. ε vs. k for Dy-doped Bi2212 samples from [5]. There
are no experimental points along X → Y . Dashed-curve: tR =
0.1 eV, t̃ = 0.005 eV, t′ = −0.006 eV for ∼ optimal Tc = 85 K
(triangles); continuous curve: tR = 0.082 eV, t̃ = 0.032 eV,
t′ = −0.042 eV, for underdoped Tc = 65 K (squares); and
dotted line: tR = 0.075 eV, t̃ = 0.05 eV, t′ = −0.055 eV, for
strongly underdoped Tc = 25 K (open circles), calculated with
equation (6).

the X → Y direction persists, however the magnitude of
the gap decreases. (Because there is an energy scale shift
between the data in Refs. [1,5] for the same samples, we
just include the experimental points in Fig. 3. They have
the same X → Y dependence than our calculated curves
in Fig. 4). When the gap closes, the usual dispersion of
the n.n. tight-binding case is recovered, this occurs close
to optimal doping. In fact, for the 85 K case of Figure 4,
a better fit is obtained for very weak but not vanishing
AF correlations. The Γ →M ′ direction is less affected by
doping. Along the X → M → M ′ direction the experi-
mental situation is controversial: no clear crossing of the
Fermi level has been detected in the pseudogap regime,
and shadow bands (points with weaker intensity in the
M ′ → M direction) have been only reported in [3]. This
last situation will imply in our approach even larger val-
ues of t̃ and t′, which will better describe the flattening
of the band around X. However, points from the same
reference [5] for underdoped argon annealed samples seem
to go up towards the M point. As we cannot calculate
the corresponding intensity, we do not discuss further this
point. In both cases, the tendency for the parameters and
the conclusion concerning the dispersion in the X → Y
direction will be the same.

This behaviour will be naturally obtained for fixed tR,
t̃ and t′ in a selfconsistent calculation by just changing
the hole doping. In fact, this can be inferred from the
exact diagonalization calculation by Eder et al. [19], which
shows a consistent evolution of the spectra A(k, w) when
going from one to two added holes for an equivalent model.

Conclusion

The energy dispersion of insulating parent compounds can
be the consequence of strong AF correlations in the pla-
nar square lattice of the Cu oxides. We have shown that
the k-dependence can be described by an effective disper-
sion considering the reduced hopping of the photoemission

hole in one magnetic sublattice. This dispersion is further
enhanced in the X → Y direction by the contribution of
a diagonal term, the main origin of which remains contro-
versial. These strong local correlations will survive with
hole doping, although their weight will decrease while the
n.n. hopping term becomes more important, until the gap
closes near optimal doping.

We have shown that the normal state pseudogap can
be interpreted as a remnant property of the insulator that
continuously evolves with doping, as first pointed out by
Laughlin [20], although within a completely different in-
terpretation. While the exact diagonalization study of the
t − t′ − t′′ − J model by Eder et al. [19] did not allow
for a sufficiently smooth variation of the concentration to
map out the experimental doping dependence, it strongly
supports this unifying point of view.

The d-wave form of the superconducting gap suggests
testing this dependence for the insulator: the data and
the calculation reflecting the effect of strong correlations
in the square lattice, although not too far from it, seem
to show some differences.

Many of the elements used in our discussion have al-
ready been mentioned in the literature in other contexts.
The analysis of this accumulated knowledge within our
simple picture, gives a coherent explanation of the origin,
form and doping behaviour of the controversial [7] normal
anisotropic high-energy pseudogap.
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